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Hyperbaric oxygen therapy may improve
symptoms in autistic children
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Summary Autism is a neurodevelopmental disorder that currently affects as many as 1 out of 166 children in the
United States. Recent research has discovered that some autistic individuals have decreased cerebral perfusion,
evidence of neuroinflammation, and increased markers of oxidative stress. Multiple independent single photon
emission computed tomography (SPECT) and positron emission tomography (PET) research studies have revealed
hypoperfusion to several areas of the autistic brain, most notably the temporal regions and areas specifically related to
language comprehension and auditory processing. Several studies show that diminished blood flow to these areas
correlates with many of the clinical features associated with autism including repetitive, self-stimulatory and
stereotypical behaviors, and impairments in communication, sensory perception, and social interaction. Hyperbaric
oxygen therapy (HBOT) has been used with clinical success in several cerebral hypoperfusion syndromes including
cerebral palsy, fetal alcohol syndrome, closed head injury, and stroke. HBOT can compensate for decreased blood flow
by increasing the oxygen content of plasma and body tissues and can even normalize oxygen levels in ischemic tissue. In
addition, animal studies have shown that HBOT has potent anti-inflammatory effects and reduces oxidative stress.
Furthermore, recent evidence demonstrates that HBOT mobilizes stem cells from human bone marrow, which may aid
recovery in neurodegenerative diseases. Based upon these findings, it is hypothesized that HBOT will improve
symptoms in autistic individuals. A retrospective case series is presented that supports this hypothesis.
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Background

Overview of autism

Autism is a neurodevelopmental disorder currently
affecting as many as 1 out of 166 children in the
United States [1] that is characterized by impair-
ments in social interaction, difficulty with commu-
nication, and restrictive and repetitive behaviors
[2]. It affects children from all socioeconomic
and ethnic backgrounds [3]. Autism was considered
ved.
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a rare condition before the 1990’s with a preva-
lence of approximately 1 in 2500 children [4]. How-
ever, according to the US Department of
Developmental Services, the prevalence of autism
spectrum disorders increased 556% from 1991 to
1997 [5]. Autism is now more common than child-
hood cancer, cerebral palsy, Down’s syndrome,
spina bifida, or cystic fibrosis [6,7]. In addition,
autism is found throughout the globe and the prev-
alence worldwide is increasing 3.8% per year [8].
Autism is an incompletely understood disorder
[3,5], but new clinical research is beginning to un-
ravel some of its mysteries.

Overview of hyperbaric oxygen therapy

Hyperbaric oxygen therapy (HBOT) involves inhal-
ing 100% oxygen at greater than one atmosphere
absolute (ATA) in a pressurized chamber [9]. HBOT
has been used successfully in humans at varying
pressures to treat a range of conditions. Many clin-
ical applications of HBOT are at higher pressures
(over 2.0 ATA) including treatment of decompres-
sion sickness, arterial gas embolism, carbon mon-
oxide poisoning [10], amyotrophic lateral sclerosis
[11], and complex regional pain syndrome [12].
However, HBOT has also been used at lower pres-
sures (1.5 ATA or less) with clinical success in con-
ditions including fetal alcohol syndrome [13] and
ischemic brain injury [14]. HBOT at 1.5 ATA was
utilized in a prospective trial of 168 patients with
closed head trauma with a significant reduction in
mortality (32% versus 17%) [15].

HBOT has been shown to increase the oxygen
content of plasma [16] and body tissues [17] and
can even normalize oxygen levels in ischemic tissue
[18]. In fact, the amount of oxygen delivered by
HBOT at 3.0 ATA and 100% oxygen is able to keep
tissue viable even without oxygen input from circu-
lating hemoglobin [17]. In rat models, HBOT has
been shown to reduce the effects of hypoxia and
ischemia on the neonatal brain [19]. Human studies
demonstrate that HBOT causes mild vasoconstric-
tion resulting in decreased blood flow [20,21] but
at the same time causes increased oxygen delivery
and levels in target tissues [16,17,20]. By causing
mild vasoconstriction, HBOT can reduce edema in
ischemic tissue [22] including the brain [20,23],
which results in lowering intracranial pressure [20].

HBOT is generally considered safe [17] at oxygen
pressures below 3.0 ATA and with treatment dura-
tions of less than 120 min [10,13,24]. The use of
HBOT in children appears generally safe, even at
pressures of 2.0 ATA for 2 hours per day for up to
40 sessions [25]. The most common side effect of
HBOT is middle ear barotrauma, which occurs in
approximately 2% of patients. The incidence of
such barotrauma is decreased with pseudoephed-
rine treatment before HBOT. Less common side ef-
fects in descending order include sinus squeeze,
serous otitis, claustrophobia, and reversible myo-
pia. Seizures may occur infrequently in about
0.01–0.03% of patients [9].
Hypothesis

Multiple studies have revealed that autism is a neu-
rodegenerative disease characterized by cerebral
hypoperfusion, neuroinflammation, and increased
oxidative stress. HBOT helps overcome hypoperfu-
sion, has potent anti-inflammatory effects and re-
duces oxidative stress. Furthermore, HBOT
mobilizes stems cells from human bone marrow.
Therefore, HBOT will improve symptoms of autism.
Improving cerebral hypoperfusion in
autism

Evidence of decreased cerebral blood flow in
autism and possible mechanisms of
hypoperfusion

Even in the presence of normal magnetic resonance
imaging (MRI) findings, focal areas of decreased
cerebral blood flow occur in children with autism
[26]. Multiple independent single photon emission
computed tomography (SPECT) and positron emis-
sion tomography (PET) research studies have dem-
onstrated hypoperfusion to several areas of the
autistic brain, most notably the temporal lobes
[26–39]. Several studies show that reduced blood
flow to the temporal regions and other brain areas
correlates with many of the clinical findings associ-
ated with autism including repetitive, self-stimula-
tory and stereotypical behaviors, and impairments
in communication, sensory perception, and social
interaction [27,29,31,39–42]. Furthermore, a cor-
relation between decreased IQ and hypoperfusion
of the temporal and frontal lobes has been de-
scribed in autistics [36].

The cause of this decreased blood flow is not
known but may be secondary to changes in cerebral
arterial resistance. Under normal conditions, cere-
bral blood flow increases when local brain tissue
metabolic rate and functioning increases [43,44].
However, this response may be reversed in autistic
children. One of the first studies measuring cere-
bral blood flow in autistic children utilized trans-
cranial Doppler ultrasound and showed decreased
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blood flow and concomitantly increased middle
cerebral arterial resistance upon auditory stimula-
tion. Conversely, control neurotypical and men-
tally retarded children showed opposite results
[45].

The mechanism of this abnormal change in cere-
bral arterial resistance in autistic children is un-
known. However, several studies have shown that
astrocytes can regulate cerebral blood flow. Astro-
cytes can directly cause arteriole vasoconstriction
through a calcium mechanism [46] and arteriole
vasodilatation through a cyclooxygenase medium
[47]. Neurons, astrocytes, and vascular cells com-
pose a functional unit that maintains proper blood
flow and oxygenation for the brain [48]. Neural
activity normally causes increased cerebral blood
flow thus delivering increased oxygen [44]. How-
ever, a recent study found evidence of neuroin-
flammation and astroglial activation in autism
[49]. It is possible that astroglial inflammation
may affect the control of blood flow regulated by
astrocytes and lead to the abnormal changes in
cerebral artery resistance and hypoperfusion seen
in some autistic children.

Furthermore, inflammation is a known cause of
decreased blood flow and several inflammatory
conditions have associated cerebral hypoperfusion
including lupus [50,51], Sjögren’s syndrome [52],
Behçet’s disease [53], viral encephalitis [54,55],
and acute Kawasaki disease [40]. One SPECT study
of 27 children with echovirus meningitis demon-
strated decreased cerebral blood flow in 74% of
the children [55] and two recent SPECT studies re-
vealed impaired cerebral perfusion in 81% of pa-
tients with Sjögren’s syndrome [52]. In one SPECT
study of patients with systemic lupus erythemato-
sus, 59% had evidence of cerebral hypoperfusion
[51]. Furthermore, treatment of the inflammation
found in lupus with iloprost [56] and methylpred-
nisolone [57] normalized cerebral blood flow on
follow-up SPECT scans. It is conceivable that the
cerebral hypoperfusion found in autistic children
may be triggered by neuroinflammation and there-
fore may be reversible with anti-inflammatory
modalities.
Zones of the autistic brain affected by
decreased blood flow and symptom
correlations

Cerebral hypoperfusion may play a role in some of
the more unusual characteristics of autistic behav-
ior. Diminished blood flow to the thalamus has
been correlated with the autistic clinical features
of repetitive, self-stimulatory, and unusual behav-
iors including resistance to changes in routine and
environment [29]. Hypoperfusion of the temporal
lobes has also been linked with increased autism
symptom profile scores including ‘‘obsessive desire
for sameness’’ and ‘‘impairments in communica-
tion and social interaction’’ [31]. Another study
on ‘‘high functioning’’ autistics demonstrated de-
creased blood flow to areas of the temporal lobe
and amygdala, which was correlated with clinical
impairments in processing facial expressions and
emotions [42]. This was confirmed by a recent
study of autistics demonstrating diminished blood
flow to the ‘‘fusiform face area’’ responsible for
recognizing familiar faces [58].

In addition, decreased perfusion of the temporal
lobes is a consistent finding in many studies of
autistic children. Two larger controlled studies
(21–23 autistic children) using SPECT and PET
scans confirmed significant bitemporal hypoperfu-
sion [31,34]. In both of these studies, the control
group was mentally retarded; therefore, the hyp-
operfusion could not be attributed to mental retar-
dation alone [33,34]. Another SPECT study of 31
autistic children, 16 of whom had epilepsy, also
demonstrated reduction of cerebral blood flow to
the temporal lobes. Of note, cerebral blood flow
was not different between those with and without
epilepsy, suggesting that epilepsy itself was not
associated with hypoperfusion in these individuals
[37]. A more recent PET study of 11 autistic chil-
dren revealed diminished blood flow to the left
temporal area, including Wernicke’s area (which
is involved in language comprehension) and Brod-
mann’s area 21 (involved in auditory processing
and language), when compared to age-matched
mentally retarded children [39]. Interestingly, an
association between temporal lobe abnormalities
[59] and the subsequent development of secondary
autism has been described in tuberous sclerosis
[60], infantile spasms [61], herpes simplex enceph-
alitis [62,63], and an acute encephalopathic illness
in children [64].

The relative amount of cerebral hypoperfusion
in autistic children can vary by age. In one study,
hypoperfusion of the prefrontal and left temporal
areas worsened and became ‘‘quite profound’’ as
the age of the autistic child increased. This dimin-
ished perfusion correlated with decreased lan-
guage development. The authors concluded that
hypoperfusion ‘‘subsequently prevents develop-
ment of true verbal fluency and development in
the temporal and frontal areas associated with
speech and communication’’ [27].

Hypoperfusion of the temporal and other brain
regions has been correlated with many of the clin-
ical findings associated with autism including self-
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stimulatory behaviors and impairments in commu-
nication, sensory perception, and social interaction
[33,34]. This diminished blood flow may be medi-
ated by neuroinflammation. Further studies on
the effects of inflammation on blood flow in the
autistic brain are needed, especially studies involv-
ing the temporal lobes where hypoperfusion is
common. Whatever the cause of the hypoperfu-
sion, the possibility exists that the enhancement
of oxygen delivery to the brain accomplished by
HBOT may improve some of the symptoms found
in autistic children.
The use of HBOT in cerebral hypoperfusion
disorders

The oxygen delivered by HBOT can reverse hypoxia
in brain tissues caused by hypoperfusion [65,66].
Cerebral hypoperfusion causes hypoxia, which trig-
gers electrical failure in brain cells. Worsening hy-
poxia then eventually results in ion pump failure,
which ultimately leads to cell death [67]. Cells that
have electrical failure but retain ion pump ability
have been described as ‘‘idling’’ because they re-
main alive but non-functional [68]. SPECT studies
have confirmed the presence of these ‘‘idling
cells,’’ which surround areas of focal ischemia
and comprise what is termed the ‘‘ischemic pen-
umbra’’ [69]. Restoration of oxygenation, some-
times even years after the ischemic insult, can
salvage these cells, which may explain why the
acute findings of a stroke are poor predictors of
ultimate clinical outcomes [67].

Even though HBOT causes decreased cerebral
blood flow through vasoconstriction [70], it simul-
taneously causes increased cerebral oxygen tension
[20] and may accelerate brain recovery from ische-
mia [71]. In one case report, 80 sessions of HBOT at
1.5 ATA increased oxygenation to the ischemic
penumbra on SPECT scans and significantly im-
proved cognitive and motor function in a patient
with an ischemic brain injury from a near drowning
episode 12 years earlier [14]. Another study of
three patients with brain injuries showed areas of
‘‘dormant’’ neurons in the ischemic penumbra on
SPECT scans prior to the commencement of HBOT
at 1.5 ATA. All three patients had improvement in
the oxygenation of these areas as seen on post-
HBOT SPECT scans, which was correlated with clin-
ical improvement [65].

HBOT has been used with clinical effectiveness
in some cerebral hypoperfusion disorders includ-
ing lupus [72] and traumatic midbrain syndrome
[73], and may be beneficial in acute ischemic
stroke [74] and acute myocardial infarction [16].
In addition, HBOT has been used in several stud-
ies on children with cerebral palsy (CP). Some
children with CP due to perinatal asphyxia have
focal areas of cerebral hypoperfusion on SPECT
scans [75]. Significant clinical improvements were
found in one study of children with CP after 20
sessions of HBOT at 95% oxygen and 1.75 ATA
[76].

Other studies using HBOT in cerebral hypoperfu-
sion disorders have been performed at lower pres-
sures (1.5 ATA or less). Stoller recently reported on
one pediatric case of fetal alcohol syndrome,
which is considered ‘‘irreversible and incurable’’
[13] and is characterized by cerebral hypoperfusion
on SPECT studies [77]. Using HBOT at 1.5 ATA, the
child had statistically significant improvements in
verbal, memory, reaction time, impulse control,
and visual motor scores [13]. In addition, Heuser
et al. [78] treated a four year old autistic child
using lower pressure HBOT at 1.3 ATA and reported
‘‘striking improvement in behavior including mem-
ory and cognitive functions’’ after only ten ses-
sions. Furthermore, the child had improvement of
cerebral hypoperfusion as measured by pre-HBOT
and post-HBOT SPECT scans [78]. These case re-
ports are notable because they demonstrate that
some ‘‘irreversible’’ and permanent neurological
conditions can have clinical improvements with
HBOT.

The number of HBOT sessions needed to produce
full clinical improvements from cerebral hypoper-
fusion or ischemia is unclear. In one study combin-
ing the use of SPECT and HBOT, an average of 70
treatments was needed to show a significant in-
crease in cerebral blood oxygenation and metabo-
lism in patients with chronic neurological
disorders including CP, stroke, and traumatic brain
injury. Of note, the rate of improvement in cere-
bral blood oxygenation was more profound during
the last 35 treatments compared to the first 35
[79]. In addition, reports from some HBOT
researchers indicate that younger patients tend
to have improvements more quickly than older pa-
tients [79]. Therefore, older patients may need
more treatments.

Since many autistic children experience at least
a mild degree of cerebral hypoperfusion, this de-
creased blood flow could lead to an element of
brain hypoxia. Multiple SPECT studies have shown
evidence of relative brain hypoxia in certain cere-
bral hypoperfusion syndromes, including autism
[78], which improved after HBOT [14,65,78,79]. It
is certainly plausible that the increased oxygen
delivery by HBOT could overcome any hypoxia
caused by hypoperfusion and thus lead to improve-
ments in the symptoms of autistic children.
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Improving neuroinflammation in autism

Evidence of neuroinflammation in autism

Recent studies reveal that autism is characterized
by neuroinflammation. Autopsy brain samples of
autistic patients demonstrate an active neuroin-
flammatory process in the middle frontal gryus,
anterior cingulate gryus, and cerebellar hemi-
spheres including increased microglial and astrog-
lial activation and increased proinflammatory
cytokines. Furthermore, cerebrospinal fluid ob-
tained from living autistic patients also ‘‘showed a
prominent proinflammatory profile’’ [49]. Previous
studies of autistic children have shown circulating
serum autoantibodies to brain elements including
neuron-axon filament protein and glial fibrillary
acidic protein [80], the caudate nucleus, cerebral
cortex and cerebellum [81,82] and neuron-specific
antigens including myelin basic protein [83,84].

Inflammation in autistic children is not limited
to the brain. When compared to typical children,
autistic children make significantly more serum
antibodies against gliadin and casein peptides
[85], produce more pro-inflammatory cytokines
[86], and have an imbalance of CD4+ and CD8+ cells
[87]. Furthermore, some patients with autism have
mucosal inflammation of the stomach, small intes-
tine and colon characterized by ileo-colonic lym-
phoid nodular hyperplasia [88]. In these children,
the gastrointestinal mucosa has evidence of proin-
flammatory cytokines [89], increased lymphocytic
density, and epithelial IgG deposits mimicking an
autoimmune lesion [90].

Several different therapies have been employed
in treating the inflammation found in autistic chil-
dren with some clinical success, including intrave-
nous immune globulin [91]. Further research is
needed to clarify the role of inflammation in aut-
ism and to investigate potential therapies [92].
However, HBOT may be useful in decreasing inflam-
mation found in autistic patients and may thereby
improve symptoms.
HBOT use in inflammatory conditions

Several animal studies have revealed that HBOT has
potent anti-inflammatory tissue effects [93,94]
with equivalence to diclofenac 20 mg/kg noted in
one study using HBOT at 2.4 ATA and 100% oxygen
[95]. HBOT has also been shown to decrease the
symptoms of advanced arthritis in rats [96] and
attenuates the inflammatory response in the perito-
neal cavity caused by injected meconium [97]. In
addition, one animal study using HBOT at 2.5 ATA
showed increased survival and decreased protein-
uria, anti-dsDNA antibody titers, and immune-com-
plex deposition in lupus-prone autoimmune mice
[98]. Furthermore, HBOT has been used in animal
studies to improve colitis [93]. Interestingly, thirty
sessions of HBOT at 2.0 ATA has been used in hu-
mans to achieve remission of ulcerative colitis not
responding to conventional therapies [99]. This
may be relevant in autistic children given the higher
prevalence of gastrointestinal mucosal inflamma-
tion described previously. Given the results of these
studies, it is certainly plausible that HBOT can de-
crease both neuroinflammation and gastrointestinal
inflammation in autistic children and thereby
potentially lead to improvements in symptoms.
Improving oxidative stress in autism

Evidence of increased oxidative stress in
autism

Recent studies have shown that autistic children
have evidence of increased oxidative stress includ-
ing lower serum glutathione levels [100]. Sogut
et al. [101] demonstrated that autistic children
had increased red blood cell nitric oxide, which is
a known reactive free radical and is toxic to the
brain [101]. James et al. [100] recently showed
that total serum glutathione levels were 46% lower
and oxidized glutathione was 72% higher in autistic
children when compared to neurotypical controls.
This was reflected in a lower redox ratio of reduced
glutathione to oxidized glutathione, which presum-
ably led to decreased antioxidant ability in these
autistic children [100]. Lower serum antioxidant
enzyme, antioxidant nutrient, and glutathione lev-
els, as well as higher pro-oxidants have been found
in multiple studies of autistic children [102]. Fur-
thermore, treatment with anti-oxidants has been
shown to raise the levels of reduced glutathione
in the serum of autistic children and appears to im-
prove symptoms [100]. It is speculated that treat-
ment with hyperbaric oxygen may also help
reduce oxidative stress in autistic children.

The effect of HBOT on oxidative stress

Multiple studies have shown neutral effects on oxi-
dative stress with HBOT use [103]. In one study on
horse platelets, measures of oxidative stress were
not increased after HBOT; in fact, a rise in the anti-
oxidant enzyme superoxide dismutase (SOD) was
found 24 h after HBOT without a fall in glutathione
levels [104]. In another study on dogs, following
18 min of complete cerebral ischemia, HBOT at
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2.0 ATA reduced brain damage without increasing
oxidative stress [105]. Furthermore, in a rat model
of reperfusion, HBOT extended skin flap life with-
out evidence of oxidative stress [106].

In addition, numerous studies have shown
improvements in oxidative stress with HBOT includ-
ing increased production of antioxidants and antiox-
idant enzymes and decreased markers of oxidative
stress such as malondialdehyde [105,107,108]. An
improvement in the survival rate of skin flaps and
an increase in SOD levels were found in one study
when rats were exposed to hyperbaric oxygen at
2.0 ATA [109]. In another study, HBOT at 2.5 ATA in-
duced the production of antioxidants and decreased
malondialdehyde levels in rats [107]. Furthermore,
in a study of rats with pancreatitis, HBOT at 2.5
ATA decreased oxidative stress markers including
malondialdehyde, and increased the levels of the
anti-oxidant enzymes glutathione peroxidase and
SOD [108]. HBOT has also been shown to acutely
raise the levels of reduced glutathione in the plasma
and lymphocytes of some humans after just one
treatment session at 2.5 ATA [110]. Finally, ische-
mia-reperfusion injuries usually cause oxidative
stress through decreases in glutathione levels and
activities of catalase and SOD. However, in one rat
study of ischemia, pretreatment with 1–3 doses of
HBOT caused an increase in liver glutathione and
SOD levels and protected against liver injury; con-
trol animals not receiving HBOT actually had drops
in glutathione and anti-oxidant enzyme levels and
had concomitant liver damage [111].
HBOT, reactive oxygen species, and
anti-oxidants

Concerns have been raised that HBOT may cause in-
creased oxidative stress through the production of
reactive oxygen species [112]. This concern is con-
troversial as studies have shown mixed results.
Contrary to the studies discussed previously, sev-
eral studies using HBOT at 2.5 ATA or greater have
found evidence of increased oxidative stress [113–
115]. Support for this higher pressure effect was
found in one study, which demonstrated that HBOT
at 2.0 ATA increased SOD levels whereas HBOT at
3.0 ATA caused SOD levels to decrease, presumably
because the SOD had to neutralize more free radi-
cals at the 3.0 ATA pressure [116]. Thus, from an
oxidative stress and SOD production standpoint,
there might be an optimal HBOT pressure, which
falls somewhere below 2.5 ATA.

Along a similar line of thought, some authors
have speculated that a limited quantity of reactive
oxygen metabolites may actually have beneficial
effects in the human body [117–119]. The produc-
tion of small amounts of oxygen radicals may con-
fer protection from future hypoxia and this effect
has been termed ‘‘ischemic tolerance.’’ In one ani-
mal study, pre-treatment with HBOT at 2.0 ATA
prior to an ischemia insult induced ischemic toler-
ance whereas pre-treatment at 3.0 ATA did not,
possibly because this higher pressure may have
generated too many oxygen radicals [116].

Nevertheless, many studies demonstrate that
HBOT lowers oxidative stress. Furthermore, oxida-
tive stress appears to be less of a concern at pres-
sures under 2.0 ATA, which are often used clinically
[116]. In spite of this, therapies to raise glutathi-
one levels [100] and the use of antioxidants [120]
may be beneficial in patients with conditions of in-
creased oxidative stress before HBOT is contem-
plated. Several antioxidant supplements have
been found to attenuate oxidative stress induced
by high pressure HBOT including a-lipoic acid
[112], melatonin [121], N-acetylcysteine
[111,122], vitamin E [123], riboflavin [124], sele-
nium [123,124], and glutathione [125]. Based upon
these findings, a combination of antioxidants and
HBOT may help reduce oxidative stress in autistic
children and lead to improvements in symptoms.
Improving stem cell mobilization in
autism

Recently, HBOT at 2.0 ATA and 100% oxygen for 2 h
was shown to mobilize stem/progenitor cells from
the bone marrow of humans. Elevations were found
in the number of colony-forming cells as demon-
strated by an increase in the number of CD34+ cells
by almost 2-fold [126]. This finding is relevant be-
cause autism and hypoxic brain injuries are consid-
ered by many to be permanent conditions.
However, new research is revealing that even
long-standing brain disorders may be partially
reversible [13,14]. Recently, stem cells have been
isolated in the adult brain. This leads to the possi-
bility of neuropoiesis, or regrowth, of certain brain
cells. A possible scenario for inducing brain repair
through the use of existing mature brain stem cells
has been described and is dependent on an intact
vascular supply and adequate oxygen [127], both
of which can be enhanced by HBOT.
Testing the hypothesis

There is a strong possibility that HBOT could play
an integral role in improving brain disorders associ-
ated with hypoxia, hypoperfusion, inflammation,



Table 1 Summary of HBOT use in autism

Autism HBOT

. Cerebral perfusion m Perfusion to brain tissue
m Inflammation . Inflammation
m Oxidative stress . Oxidative stress
Neurodegenerative
disease

m Stem cells
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and/or oxidative stress, including autism, through
the improvement of oxygen supply, decreased
inflammation and oxidative stress, and/or the
recruitment of new stem cells (see Table 1). This
in turn should lead to improved clinical outcomes.
Some physicians have begun using HBOT in autistic
children and anecdotal reports indicate that HBOT
has improved symptoms in autistic children includ-
ing enhancements in socialization, language, and
repetitive behaviors [78,128]. A recent retrospec-
tive case series also indicates that low pressure
HBOT may improve symptoms in autistic children
(see Appendix A). Further research in this area,
including HBOT trials in autistic patients, is ur-
gently needed to test this hypothesis.
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Appendix A. Low pressure hyperbaric
oxygen therapy1 improves symptoms in
autistic children: A retrospective case
series

Background

Since low pressure HBOT (under 1.5 ATA) improved
symptoms in some patients with cerebral hypoper-
1 Hyperbaric oxygen therapy (HBOT) normally refers to inhal-
ing 100% oxygen at greater than 1 ATA in a pressurized chamber
[9]. However, for the purposes of this case series, the treatment
with hyperbaric pressure at 1.3 ATA augmented with 28–30%
oxygen is referred to as HBOT. Hyperbaric pressure at 1.3 ATA
and room air is simply termed hyperbaric therapy.
fusion disorders [13–15,65], it was hypothesized
that low pressure HBOT would also help autism, a
disease in which cerebral hypoperfusion is an inte-
gral component [31,32]. Recently, evidence has
accumulated that low pressure hyperbaric therapy
at 1.3 ATA and less than 100% delivered oxygen may
improve symptoms in some diseases associated
with cerebral hypoperfusion. For instance, one
study using hyperbaric therapy at 1.3 ATA and room
air demonstrated clinical improvements in some
children with CP [129,130], a disease shown to
have evidence of diminished cerebral blood flow
[75]. Furthermore, one case report indicated
‘‘striking improvement’’ in a 4 year old child with
autism after using hyperbaric therapy for 10 ses-
sions at 1.3 ATA and room air. The child also had
improvement of cerebral hypoperfusion as mea-
sured by pre-HBOT and post-HBOT SPECT scans
[78]. Based upon these findings, it was hypothe-
sized that low pressure HBOT would improve symp-
toms of autism. A retrospective case series was
examined to evaluate this hypothesis. A review of
the medical literature was performed using MED-
LINE and Google Scholar and no clinical studies
were found on the use of HBOT in autistic children.
Methods

This study is a retrospective analysis of 6 autistic
children who underwent low-pressure HBOT. All 6
children had a prior diagnosis of autism (DSM-IV
299.00) by an outside physician and none of the
children had previously received HBOT. In the nor-
mal course of treatment, parent-rated scales were
obtained pre-treatment and post-treatment. The
University of Virginia Institutional Review Board
for Health Sciences Research approved our retro-
spective examination of cases in this study and
for the use of this data for publication.

Informed consent was obtained from each
child’s parent(s) prior to starting HBOT. All 6 chil-
dren started and 5 completed 40 1 h sessions of
low pressure HBOT at 1.3 ATA and 28–30% oxygen
(after adjustment for the pressure effect) over a
three month period. One child (Child C) only fin-
ished twenty-five sessions due to scheduling con-
flicts and was included in the analysis. All 6
children were taking multiple antioxidant supple-
ments before starting HBOT. Children were allowed
to continue all current therapies and to add new
ones during HBOT. The characteristics of the chil-
dren, including age and sex, are found in Table 2.

A low pressure hyperbaric chamber was used.
Room air mixed with oxygen from an oxygen
concentrator was pumped into the pressurized



Table 2 Patient characteristics and scoresa

Child Age Sex ATEC before
HBOT

ATEC after
HBOT

CARS before
HBOT

CARS after
HBOT

SRS before
HBOT

SRS after
HBOT

A 2 M 40 22 21 17 98 44
B 4 M 91 55 37.5 30 154 110
Cb 3 M 75 64 45 38 135 121
D 7 M 35 32 27 25 94 62
E 6 F 88 80 41.5 39.5 139 121
F 7 F 24 22 23 22 54 67

a Declining scores indicate improvement on these scales.
b Received only 25 HBOT treatments.

Table 3 Average score changesa by age

Age ATEC before
HBOT

ATEC after
HBOT

CARS before
HBOT

CARS after
HBOT

SRS before
HBOT

SRS after
HBOT

4 and under 68.7 47.0 34.5 28.3 129.0 91.7
5 and older 49.0 44.7 30.5 28.8 95.7 83.3
All children 58.8 45.8 32.5 28.6 112.3 87.5

a Declining scores indicate improvement on these scales.
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chamber, resulting in a final chamber oxygen con-
centration of 28–30% by direct oximetry measure-
ment using a Moxy� oxygen monitor and after
adjustment for the pressure effect. Multiple ran-
dom oximetry measurements were taken on differ-
ent treatment days to verify the consistency of the
chamber oxygen concentration, which uniformly
remained 28–30%. Parent rated pre-treatment
scores and post-treatment scores were calculated
for each subject (see Table 2) using the Autism
Treatment Evaluation Checklist (ATEC), Childhood
Autism Rating Scale (CARS), and Social Responsive-
ness Scale (SRS). ATEC is a scoring system of verbal
communication, sociability, sensory/cognitive
awareness, and health/autistic behaviors published
by the Autism Research Institute [131]. CARS is a
widely used scale for screening and diagnosing aut-
ism and has been shown to correlate very well with
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Figure 1 ATEC scores for all children.
the DSM-IV criteria for autism diagnosis [132]. SRS
is a recently validated test of interpersonal behav-
ior, communication, and stereotypical traits in
autism [133].

Results

Low pressure HBOT was well tolerated by all 6 chil-
dren with no adverse effects noted. More dramatic
improvements were found in children age 4 and
under when compared to those in the older group
(Table 3).

ATEC score results
The average improvement in all children on ATEC
was 22.1% (p = 0.0538) ( Fig. 1). ATEC scores im-
proved by 31.6% in the younger group compared
to 8.8% in the older group (Fig. 2).
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Figure 2 ATEC scores by age.
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CARS score results
The average improvement in all children on CARS
was 12.1% (p = 0.0178) (Fig. 3). CARS improved
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Figure 4 CARS scores by age.
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Figure 5 SRS scores for all children.
18.0% in the younger group and 5.6% in the older
group (Fig. 4).

SRS score results
The average improvement in all children on SRS
was 22.1% (p = 0.0518) (Fig. 5). SRS improved
28.9% in the younger group and 13.0% in the older
group (Fig. 6).
Discussion

Autism is characterized, in part, by decreased
cerebral blood flow [31,32]. Low pressure HBOT
has been used in some cerebral hypoperfusion
conditions including CP. Recently, a study demon-
strated that some children with CP had clinical
improvements using hyperbaric therapy at 1.3
ATA. In this study, 111 patients with CP and a his-
tory of hypoxia in the perinatal period had statis-
tically significant clinical improvements in gross
motor function, memory, attention, and language
production after hyperbaric therapy. One group
received lower pressure hyperbaric therapy at
1.3 ATA and room air while the other group was
given higher pressure HBOT at 1.75 ATA and
100% oxygen. Interestingly, the improvements in
symptoms were statistically equivalent in the
two groups [129]. Most of the improvements con-
tinued for 3 months after treatment and some of
the children from the study began walking, speak-
ing, and sitting for the first times in their lives
[130]. However, it must be noted that this study
was controversial, as children in the lower pres-
sure group improved equally with children in the
higher pressure group. However, based on these
findings, it was hypothesized that low-pressure
HBOT could potentially improve symptoms in
autistic children.

This case series suggests that low pressure HBOT
may indeed be beneficial in the treatment of aut-
ism. An interesting finding from this case series
was that the younger children had more significant
improvements in clinical outcome scores than the
older children. This is congruent with reports from
some HBOT researchers indicating that younger pa-
tients tend to have improvements more quickly
than older patients [79]. This effect may be par-
tially explained by the findings of a previous study,
which showed that autistic children aged 3–4 years
experience diminished frontal lobe blood flow com-
pared to age-matched neurotypical children [41]. It
is possible that HBOT in younger autistic children
can improve cerebral oxygenation and thus over-
come the effects of hypoperfusion and aid these
children in ‘‘catching up’’ with their neurotypical
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peers. Furthermore, the younger children in this
case series may have had less overall hypoperfusion
to surmount because decreased cerebral blood flow
to areas associated with communication has been
shown to worsen with increasing age in autistic
children [27]. It is likely that the older children in
this case series need more than 40 HBOT sessions
to show further improvements, especially since
some HBOT researchers have noted that 50–80
HBOT sessions are typically needed to show signif-
icant clinical gains [79]. In addition, the chamber
was augmented with only 28–30% oxygen instead
of 100% oxygen. It is possible that the children in
this case series may have experienced more
improvements if 100% oxygen and/or a higher pres-
sure had been used. These speculations certainly
warrant further testing.

This case series did have several inherent limi-
tations. Children were allowed to continue all
other therapies for autism and also add new ones,
such as supplements. Therefore, other therapies
could have contributed to the some of the clinical
gains. Parents were not blinded to the fact that
their children received HBOT and evaluation of
the children was through parent-rated scales,
either of which could lead to bias. There was no
placebo or control group. Thus, the improvements
could have been due merely to the natural
development of the children, although none of
the parents reported their child as undergoing
developmental spurts of similar or greater magni-
tude in the recent past. Finally, this series lacked
power because the sample size was small. Despite
these limitations, the analysis of this case series
suggests substantial clinical benefits were pro-
duced, and therefore, this hypothesis needs to
be tested in a formal prospective study.
Conclusions

HBOT has been shown to increase oxygen delivery
to hypoperfused or hypoxic tissues, decrease
inflammation and oxidative stress, and mobilize
stem cells from human bone marrow. The mecha-
nism of clinical improvements in ATEC, CARS, and
SRS scores in the children studied may be second-
ary to increased oxygenation of underperfused
areas of the autistic brain, reduced neuroinflam-
mation, decreased oxidative stress, or a combina-
tion of these. This case series suggests that low
pressure HBOT improves symptoms in autistic chil-
dren. Further research in this area, including HBOT
trials in autistic patients, using observers blinded
to the intervention, is now needed to test this
hypothesis.
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